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LElTER TO THE EDITOR 

Numerical simulations of a Langevin dynamics of wetting 

Bastien Chopard 
HLRZ, Forachun~entrum-Jiilich, Postfaeh 1913, 0-5170 Jiilich, Federal Republic of 
GeIllla"y 

Received 2 January 1991 

Abstract. We consider numerical simulations of the Langevin equations recently proposed 
by Abraham el 01 to model the spreading of a fluid on a substrate. A dependence upon 
the temperature is found in both the dynamical and the static properties. The contact angle, 
as a function of the parameters, is calculated in the partial wetting case. A precursor film 
with constant speed i s  observed in the complete wetting phase. The fluid above the precursor 
film is found to behave in time as t', with n function of the height of the fluid. At low 
temperature, U is smaller than f and larger at high temperature. The profile of the fluid is 
found to be close to a parabola, at low temperature. 

The spreading of fluids and wetting of surfaces is a problem of considerable interest 
in technical sciences (properties of lubricants, paints and so forth). It is also a very 
interesting problem for the physicist in order to understand the phenomena that take 
place in such a process. Recent experiments [ I ]  have shown the formation of layers 
in a spreading fluid, whose thickness is typically of molecular size. In particular, a 
precursor film that moves faster than the rest of the fluid is seen at the interface with 
the solid substrate. 

Hydrodynamics in its usual form might not be appropriate to describe the spreading 
of a fluid, due to the presence of these microscopic layers and also due to the type of 
boundary condition (slip or no slip) one has to impose at the interface [Z]. 

Simple models of spreading giving predictions that can be tested experimentally 
are of interest. Abraham e f  a/ [3] have proposed such a simple model where a precursor 
film appears naturally. They have considered the case of a semi-infinite wedge of a 
non-volatile fluid, spreading on a smooth solid horizontal substrate. The idea of the 
model is to .divide the fluid into L horizontal layers of thickness 1. The displacement 
ofthe ith layer is described by the quantity hi( I )  and obeys the set of Langevin equations 

where the qi(f) are Gaussian uncorrelated white noises. The free energy F ( h )  contains 
a contribution of the surface tension J and another one due to the interaction w0 
between the fluid and the substrate. Its effect is to favour the coverage of the substrate 
by the fluid. In the case of a short range interaction, it only affects the very first layer 
ho and comes as an additive part in the free energy. 

Equation (1) has to be supplemented by the initial conditions h j ( f = O ) = O  for all i, 
and the boundary condition hL-, = 0 for all times 1. 
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Our aim is not to discuss the validity of this model, hut rather to investigate 
numerically the predictions it gives, with the hope that these predictions will be 
compared with other models [4,51 and ultimately with real experiments. In particular, 
we would like to compare our results with the Monte Carlo simulations performed by 

the same model, but with a Hamiltonian derived from F by assuming 

For the purpose of a numerical treatment, we have considered a discrete time 
version of (1): 

and,for i = l ,  ..., L-2 

For simplicity, the ~ ~ ( t )  are taken as independent random variables, uniformly dis- 
tributed between -a12 and a/2, where 

a=- 

so that (7f(t))=2kBT. The fact that the noise is not Gaussian distributed is found to 
have no effect on our results, at least in the case of partial wetting where analytical 
work is possible. 

When po < J, a numerical simulation of equations (3) and (4) show that a stationary 
regime is reached after a large enough number of iterations. The profile of the spreading 
fluid as a function of time is shown in figure ](a). 

The probability distribution P ( t ,  h,, . . . , hL-J associated with the Langevin 
equation (1) is known to obey the Fokker-Planck equation 

In this case, the stationary solution of Fokker-Planck equation is simply 

P = K  exp(-F1k.T). ( 6 )  

The constant K is the normalization. This solution makes sense only when the integral 
of P is finite, i.e. when p,c J as can be seen by inspection of (6) .  

The value of K as well as the average quantities ( h i )  are difficult to obtain analytically 
from P. Figure l ( a )  shows that the stationary profile is a straight line. In addition, 
simulations of various system sizes, show that the contact angle 0 is independent of 
the number of layers L. Thus, only the value of h,  is important. It turns out that 
considering a system with only one layer (L= I )  already gives quite good results for 
the contact angle defined in this case as 

1 
tan .9 =-. 

(ho) 
(7) 

For L =  1, a simple numerical integration yields K and ( h d .  In figure 2, the results of 
this one-layer calculation is compared with the simulation of the Langevin equations 
of a sixteen layers system. We obtain a very satisfactory agreement. 
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Figure 1. RofiiC of the spreading fluid for ( a )  partial 
wetting, ( b )  at the transition and ( e )  lor complete 
welting. The values of I , ,  c2, I, and I, are 2800. 
12400, 50800and 102000, respectively. The valuer 
of 1;. I: and 1: are 1600, 100800 and 1636800, 
respectively. An average over 512 samples has been 
made in the three cases. The temperature plays no 

- 

0 looo 
Horizontal displacement role in the transition. 

The behaviour near the transition and for high temperature can be obtained 
analytically for L = 1, by assuming that m- (ho(.  We get 

This behaviour is confirmed by the numerical measurements when kBT is large enough 
and po close to J (see figure 3). This shows that the temperature cannot induce a 
transition from partial to complete wetting. 

!n the limit of zero temperature, the contact angle is easily obtained from (3), with 
qo = 0. We find 
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Figure 2. Contact angle against the temperature, for various values of w0. in the partially 
wet case. The full curves are obtained by integration of the probability distribution far 
L =  1. The circles are the results of the numerical simulations of the Langevin equations 
for L =  16, with an average over 256 samples. 
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Flgure 3. Behaviour of the contad angle for high temperature. The full circles correspond 
to the same numerical simulations as in figure 2. The slopes of the least-squares fits are 
0.11 and 0.02 far u,=O.2 and fia=0.28, respectively. These values are in reasonable 
agreement with relation (8). 

which, in the limit po<c J, gives the result of [3]. Indeed, when po<< J, 0 is close to  
l r j 2  and (h j+ ,  - hi)’ is much smaller than 1. This makes it possible to use a Taylor 
expansion of F, which leads to an exact solution of the Langevin equations. 

We also have investigated the dynamics of the partla!ly wetting phase, i.5. how the 
stationary state is reached, If the time f is not too small, it is found that 

h i ( r )  = hj(m)(l -exp(-t/T)) 

where 7 is the relaxation time which depends on both the system size and ( J  -PO). 
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For L ranging between 8 and 128, we found that 7 tends to L2, far from the transition 
and L near the transition. As p tends to J, the amplitude increases as a power law of 
J - p n  whose exponent seems to depend strongly on L, when L is small. 

When po> J, the probability distribution P given by (6) is no longer normalizable. 
Only a non-stationary state is possible and the fluid will move continuously on the 
substrate, giving rise to the complete wetting of the surface. This is illustrated in figures 
l (b)  and l(c). The question we shall address now is to find out the time behaviour of 
the moving front and its shape. From the figures: it appears that, for pn> J: the first 
layer runs quickly ahead of the rest of the fluid. Such a precursor film has been observed 
in real experiment [ 11 and was already predicted in [3]. From our numerical simulations, 
we observed that 

(h,(?))=constant+(p,- J ) t .  (9) 

This relation is found to hold even if po is very close to J, provided that f is large 
enough. No dependence on the temperature is observed. Equation (9) is in agreement 
with [3]. As far as the above layers are concerned, the theoretical predictions of [3] 
and [6] suggest a behaviour in for the first few layers. We obtain a different 
result from the numerical simulations, conducted on a 64 layers system. In the large 
time limit, it is found that 

..,\., h l t l = h + g , ? " *  (IO! 

where b is very small compared with h, and a, is temperature dependent. At low 
temperature (k,T=0.02 and k.T=O.l), a, was found to slightly decrease with i, until 
it reaches a value a,, independent of i (0.42 and 0.47, respectively). At higher 
temperature (k,T = l .O) ,  a, turned out to increase from 0.52 for i = 1, to 0.55, at i = 32. 

Although these values are very close to each other, their difference is significant 
when considering a ieast-squares fit. 

An exponent a smaller than one half may be understood from equation (4), in the 
limit of zero noise. As the fluid spreads, the differences h, - h,,, increase and a Taylor 
expansion of (4) for l /(h,  - h,+,)2 yields 

An ansatz such as (10) gives ai = f .  The effect of the noise is to increase this exponent. 
When po = J, equation (9 )  is no longer correct. The very fast precursor film does 

not exist anymore. As suggested in figures I(b) and l(c), for the same value of 
temperature, we observe that hi behaves very much as if the profile of the case po> J 
was shifted one layer down. The two situations seem equivalent, provided the index 
i goes ;o i - i ,  

Finally, we have studied the shape of the front, as a function of time, which amounts 
to the determination of the ai in (IO). For the temperatures k,T=0.02 and k,T=0.1, 
a shape close to a parabola is obtained, as shown in figure 4. More precisely, after 
having removed the precursor film, we define e as the thickness of the fluid ( e  = i - 1 )  
and x as the horizontal displacement of the front (x(e) = hi). We get 

where y = 2. It is important to note that this relation is well obeyed for the whole fluid, 
except, maybe, for the very first layers whose exponents ai are different from the bulk. 
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Figure 4. Complete wetting. The circles show a collapse of three numerical measurements 
of the profile h<(I) ,  at time 2 X  IO', 2.5 x IO* and 3 . 6 ~  IO*, respectively, with an appropriate 
scalins of the horizontal axis. The fad that the three curves are almost indis!ingolshah!e 
shows a behaviour, valid for the temperature kBT=0.02. The reasonable alignment 
of the data shows the parabolic shape of the spreading fluid. 

This is a large time result which does not fully agree with the prediction e - x-2 of 
the continuum theory [7]. When the temperature is changed, y changes also. For 
k,T=O, y tends to 1.5, whereas y >  4 is observed when k,T = 1.0. In the case of high 
temperature, relation (12) turns out to be an unsatisfactory fit. 

Our results are in qualitative agreement with those of [3-61. However, the effect 
of the temperature clearly shows up in our simulations, introducing significant quantita- 
tive differences. 

The more realistic case of a long range interaction (see [ 6 ] )  between the substrate 
and the fluid is now under investigation. 

This work was initiated by H J Herrmann and has benefited from stimulating discussions 
with D B Abraham, K Kaski and J Cook. 
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